Technical Bulletin, Communicating with Kongsberg Metering MPU 1200 Ultrasonic Gas Flowmeters

OMNI FLOW COMPUTERS, INC. 12620 West Airport Boulevard, Suite 100 Sugar Land, Texas 77478 United States of America Phone-281.240.6161 Fax: 281.240.6162 www.omniflow.com

52-0004-0002/Rev C

NOTE: User Manual Reference - This Technical Bulletin complements the information contained in the User Manual, applicable to Revision 23.74/27.74.

Communicating with Kongsberg Metering MPU 1200 Ultrasonic Gas Flowmeters – The Kongsberg Metering MPU 1200 ultrasonic flowmeter measures gas flow by using an upstream/downstream transit time method of acoustic pulses. This device communicates with OMNI Flow Computers via OMNI's 'SV' process I/O combo module using a proprietary Modbus[®] protocol. To use the scaled pulse output of the Kongsberg Metering, the flow computer must have either an 'A', 'B', or 'E' combo module installed.

Table of Contents

Scope	3
Abstract	3
MPU 1200 Ultrasonic Flowmeter Theory of Operation	3
OMNI Flow Computer Logic	3
Wiring Installation	5
OMNI Combo Module Terminal Assignments	5
MPU 1200 Terminal Assignments	6
Forward & Reverse Flow Signals	7
Forward Flow Only with (Dual) Pulse Fidelity & Integrity Checking	8
Forward & Reverse Flow with (Dual) Pulse Fidelity & Integrity Checking	9
MPU 1200 Configuration	10
Miscellaneous Configuration Settings	10
Serial Port Settings	10
OMNI 3000/6000 Configuration	10
Miscellaneous Meter Run Configuration Settings	10
Meter Run Setup Entries	11
OMNI 3000/6000 Database Addresses & Index Numbers	12
OMNI 3000/6000 User Displays	15
Meter Run Data	15
SV Module Serial Port	16

Figures

Scope

This Technical Bulletin applies to firmware revisions 23.74 and 27.74 of OMNI 3000/6000 Flow Computers for gas flow metering systems.

Abstract

Ultrasonic gas flowmeters determine the linear gas velocity through the meter tube by using multiple acoustic pulse reflection paths. These meters analyze the acoustic paths employing an upstream/downstream transit time measurement method. The OMNI Flow Computer totalizes either the flowmeter pulse input signal or the actual uncorrected volume data received from the MPU 1200 Series A and Series B.

MPU 1200 Ultrasonic Flowmeter Theory of Operation

Kongsberg's Ultrasonic Gas Flow-metering Technology incorporates multiple pairs of transducers into a smart digital inferential instrumentation device. This device is installed into a gas pipeline system to measure gas flow. Each pair of transducers emits ultrasonic (acoustic) pulses that travel bi-directionally to and from each transducer in the pair.

The MPU 1200 has six (6) pairs of transducers positioned across it so that the path between each transducer has an axial component; i.e., one transducer is upstream relative to the other. When the downstream transducer emits an ultrasonic pulse that is slowed down by the velocity of the fluid, the pulse takes longer to travel to the upstream transducer than with no flow. When the upstream transducer emits a pulse that is aided by the velocity of the fluid, the pulse takes less time to travel to the downstream transducer. Ultrasonic flowmeters that apply transit time methodology, such as the MPU 1200, measure these two (2) transit times to determine both the velocity and the speed of sound of the fluid. The flowmeter can measure gas velocity for bi-directional (forward/reverse) fluid flow.

OMNI Flow Computer Logic

The OMNI Flow Computer can determine the actual flow rate from data received either serially from the MPU 1200 flowmeter, or from a live pulse frequency signal input, if it has been connected, assigned, and configured. In this application, Modbus serial communication is the primary measurement source. The pulse frequency signal serves as a backup flow measurement, should the Modbus serial communication link fail or be disconnected (Figure 1).

The MPU 1200 serially transmits the accumulated volume to the OMNI. The flow computer obtains a calculated volume increment by subtracting the new accumulated volume from the last accumulated volume it received. The MPU 1200 flowmeter updates its totalizers on a regular interval depending upon flowing conditions and configuration settings. Updating the OMNI totalizers on this same interval would result in somewhat erratic totalizers and sampler pulse outputs, which could upset other equipment connected to the flow computer. The OMNI therefore provides a smooth totalizer update by monitoring the time interval between MPU 1200 totalizer updates, and distributing the volume increment over a matching time interval.

Figure 1. Flow Computer Logic Flow Diagram for the MPU 1200 Ultrasonic Gas Flowmeter

If there is a communication failure between the two (2) devices, the OMNI Flow Computer will not receive serial data. However, the MPU 1200 may be fully operational and continue to accumulate volume. In this case, if a pulse signal is available from the MPU 1200, the OMNI Flow Computer will automatically continue to accumulate flow based on this flow pulse train. When normal communications resume, the flow computer will validate and adjust its internal totalizers if necessary to match the volume indicated by the MPU 1200 internal totalizer. The flow computer automatically adjusts its totalizers to account for the small amount of flow that takes place before it detects that a communication failure has occurred (i.e., when the serial link fails, the OMNI Flow Computer does not immediately start totalizing using the MPU 1200 pulse train because it takes several seconds to determine if a failure has occurred).

52-0004-0002/Rev C

If a pulse signal from the MPU 1200 is not available and the communication link fails, the flow computer immediately stops totalizing. Once communication is reestablished, the OMNI Flow Computer will adjust its internal totalizers to include volume flow indicated by the MPU 1200 totalizer. In this case, the OMNI Flow Computer may have to add a significant amount of flow to its totalizers depending upon how much time the communication link was inoperative.

In some instances, adjusting the flow computer's totalizers may not be desirable; e.g.: if a flowmeter has been disconnected for a long period of time, or the MPU 1200 electronics package has been replaced. For these cases, there are flow computer configuration settings that specify the maximum time that an MPU 1200 serial communication failure can exist and still be compensated by adjusting the flow computer totalizers (default maximum time is 15 minutes).

Wiring Installation

NOTE: Setting Up and Wiring to OMNI Combo Modules – In order to communicate with MPU 1200 ultrasonic flowmeters, the OMNI Flow Computer must be equipped with at least one (1) SV combo module (Model 68-6203). For instructions on jumper settings and other process I/O combination module setup information, refer to Volume 1, Chapter 2 of the OMNI User Manual. Serial Data Communications – The serial interface between these devices and 2-wire RS-485 mode utilizing a modified Modbus protocol.

There are several options for wiring an MPU 1200 ultrasonic meter to an OMNI Flow Computer. The option to implement depends upon requirements of the flow metering system.

Connect these devices via the 2-wire RS-485 serial interface from the MPU 1200 to an OMNI SV combo module serial port. This connection uses the Modbus protocol to transmit the volumetric flow data that the MPU 1200 accumulates to the OMNI Flow Computer.

In addition to serial data, the OMNI Flow Computer can also receive live forward and/or reverse flow pulse signals from the MPU 1200. The MPU 1200 transmits pulse frequencies through wires typically connected to an OMNI E combo module. Connecting two (2) MPU 1200 pulse output channels to the OMNI Flow Computer can provide pulse fidelity and integrity checking. To perform pulse fidelity checking, the OMNI Flow Computer must have one (1) E combo module for each flowmeter and flow direction (forward/ reverse) requiring totalizing.

OMNI Combo Module Terminal Assignments

Depending upon the implemented wiring option, the OMNI Flow Computer requires SV, E, and/or A combo modules. Tables 1 thru 3 specify the terminal assignments for each module type. This information is necessary when connecting wires to the OMNI Flow Computer. The terminal block number (TB*n*) on the OMNI back panel for each combo module corresponds to the slot on the motherboard into which the module is plugged.

Terminal	Signal Description
1	Port # 1 (3): RS-485 B Wire
2	Port # 1 (3): RS-485 A Wire
3	Port # 2 (4): RS-485 B Wire
4	Port # 2 (4): RS-485 A Wire
5	Signal Return for 4-20mA Analog Outputs
6	Signal Return for 4-20mA Analog Outputs
7	Analog Output # 5: 4-20mA
8	Analog Output # 6: 4-20mA
9	Analog Output # 3: 4-20mA
10	Analog Output # 4: 4-20mA
11	Analog Output # 1: 4-20mA
12	Analog Output # 2: 4-20mA
Note:	Numbers in parenthesis "()" refer to SV module 2.

Table 1.	OMNI SV	Combo Mo	dule Bacl	k Panel	Terminal	Assignments	(TB <i>n</i>)
----------	---------	----------	-----------	---------	----------	-------------	----------------

Terminal	Signal Description
1	Input Channel # 1: 1-5v, 4-20mA, RTD
2	Input Channel # 1: Isolated Signal Return
3	Input Channel # 2: 1-5v, 4-20mA, RTD
4	Input Channel # 2: Isolated Signal Return
5	Input Channel # 3: Flowmeter Pulses
6	Input Channel # 4: Flowmeter Pulses
7	Double Chronometry Detector Switch Input (Active Low)
8	RTD Excitation Current Source Output #2
9	RTD Excitation Current Source Output #1
10	Signal Return for Terminals 5, 6, 7, 8, 9, 11 & 12 (Internally connected to DC power return
11	Analog Output # 1: 4-20mA
12	Analog Output # 2: 4-20mA

Table 2. OMNI E Combo Module Back Panel Terminal Assignments (TBn)

Table 3.	OMNI A	Combo	Module	Back	Panel	Terminal	Assid	anments ((TBn))
									• /	

Terminal	Signal Description
1	Input Channel # 1: 1-5v, 4-20mA, RTD
2	Input Channel # 1: Isolated Signal Return
3	Input Channel # 2: 1-5v, 4-20mA, RTD
4	Input Channel # 2: Isolated Signal Return
5	Input Channel # 3: Flowmeter Pulses
6	Input Channel # 3: Isolated Signal Return
7	Input Channel # 4: Flowmeter Pulses
8	Input Channel # 4: Isolated Signal Return
9	RTD Excitation Current Source Output #1
10	Signal Return for Terminals 9, 11 & 12 (Internally connected to DC power return
11	Analog Output # 1: 4-20mA
12	Analog Output # 2: 4-20mA or RTD Excitation Current Source Output #2 (See JP12 Setting)

MPU 1200 Terminal Assignments

Use the X8 and X5 terminal blocks in the MPU 1200 to connect to the OMNI Flow Computer. Tables 4 and 5 specify the terminal assignments for each of these terminal blocks. This information is necessary when connecting wires to the MPU 1200.

Terminal	Signal Description
1	Output Channel #1A: Frwrd Flow Pulses – Open Collector (NPN)
2	Output Channel #1A: Frwrd Flow Pulses – Return
3	Output Channel #1B: Frwrd Flow Pulses – Open Collector (NPN)
4	Output Channel #1B: Frwrd Flow Pulses – Return
5	Output Channel #2A: Rvrse Flow Pulses – Open Collector (NPN)
6	Output Channel #2A: Rvrse Flow Pulses – Return
7	Output Channel #2B: Rvrse Flow Pulses – Open Collector (NPN)
8	Output Channel #2B: Rvrse Flow Pulses – Return
9	Flow Direction +
10	Flow Direction -
11	Measurement Valid +
12	Measurement Valid -

 Table 4. MPU 1200 Terminal Block X8 Assignments

Terminal	Signal Description
23	Transmit/Receive Data (TxD/RxD–)
24	Termination (Negative)
25	Transmit/Receive Data (TxD/RxD+)
26	Termination (Positive)
27	Signal Ground

 Table 5. MPU 1200 Terminal Block X5 Assignments

Forward & Reverse Flow Signals

Figure 2 shows a typical wiring installation between the MPU 1200 and an OMNI 6000 for serial data and both forward and reverse flow signals. In this example, assume that the OMNI has an A module plugged into slot TB5 and an SV module in slot TB6.

Figure 2. Example of wiring a Kongsberg Metering MPU 1200 ultrasonic flowmeter to an OMNI 6000 Flow Computer with connections for serial data and live forward and reverse flow signals (without pulse fidelity and integrity checking)

Forward Flow Only with (Dual) Pulse Fidelity & Integrity Checking

Figure 3 shows a typical wiring installation between the MPU 1200 and an OMNI 6000 of serial data and forward flow signal, with connections for pulse fidelity and integrity checking. In this example, assume that the OMNI Flow Computer has an E module plugged into slot TB5, and an SV module in slot TB6.

Figure 3. Example of wiring a Kongsberg Metering MPU 1200 ultrasonic flowmeter to an OMNI 6000 Flow Computer with connections for serial data, live forward flow signal, and pulse fidelity and integrity checking

Forward & Reverse Flow with (Dual) Pulse Fidelity & Integrity Checking

Figure 4 shows a typical wiring installation between the MPU 1200 and an OMNI 6000 of serial data and both forward and reverse flow signals, with connections for pulse fidelity and integrity checking. In this example, the OMNI Flow Computer has E modules in slots TB5 and TB6, and an SV module in slot TB7.

Figure 4. Example of wiring a Kongsberg Metering MPU 1200 ultrasonic flowmeter to an OMNI 6000 Flow Computer with connections for serial data, live forward and reverse flow signals, and pulse fidelity and integrity checking

MPU 1200 Configuration

NOTE: MPU 1200 Documentation – Always refer to the official documentation supplied by FMC Kongsberg when installing, configuring, and operating the MPU 1200 ultrasonic flowmeter.

The following MPU 1200 miscellaneous configuration and serial port settings are critical in communicating with the OMNI Flow Computer.

Miscellaneous Configuration Settings

Following are the corresponding MPU 1200 database object settings:

- Database Type: Object Number 788 For Series A flowmeters, always set to 1; where 0 = 32-bit single-precision and 1 = 64-bit double-precision floating-point database. The Series B flowmeter database is fixed at 32-bit single-precision.
- Units of Measure: Object Number 798 Set to the same units of measure as OMNI 3000/6000 firmware; where **0** = metric and **1** = Imperial (US) units.

Serial Port Settings

The MPU 1200 connects to an external system using the Modbus protocol via a serial line. This connection is a 2-wire RS-485 serial link. You must also configure the MPU 1200 serial port (Table 6).

Setting	Assignment
Baud Rate	19.2K bps
Data Bits	8
Stop Bits	1
Parity	None
Modbus ID	1

OMNI 3000/6000 Configuration

NOTE: OMNI 3000/6000 Documentation Reference – For instructions on configuring the OMNI Flow Computer, refer to Chapter 2 Flow Computer Configuration in Volume 3 of the OMNI User Manual, and the Technicla Bulletin 960701 (52-0000-0001). 'Overview of OMMICOM[®] Configuration PC Software'.

Use either the flow computer's front panel keypad or OMNICOM® configuration PC software to enter configuration settings. The configuration settings specific to the MPU 1200 flowmeter are under the Miscellaneous Configuration Meter Run menu and the Meter Run Setup menu. Enter the miscellaneous meter run settings first and then proceed to the meter run setup entries.

Miscellaneous Meter Run Configuration Settings

The following miscellaneous configuration meter run settings correspond to the MPU 1200 ultrasonic gas flowmeter:

- Flowmeter Device Type For each meter run, enter [6] to select the Kongsberg Metering MPU 1200 flowmeter as the device type.
- Flow I/O Point Enter the input channel number that is used to input the ultrasonic flowmeter pulse signal. Assign flowmeter pulse signals only to Input Channels #3 and #4 of A and E combo modules, and input channel #3 of a B combo module.
- (Dual) Pulse Fidelity & Integrity Checking Enter [Y] to enable pulse fidelity and security checking for each meter run. Enter [N] to disable dual pulse fidelity checking.
- SV Module Port The OMNI Flow Computer can accept two SV combo modules. With one SV module, two SV ports are available, and with two SV modules, four ports are available. For each ultrasonic meter run, enter the SV port number (1 to 4) to which the SV module's RS-485 serial interface input from the MPU 1200 flowmeter is wired to the OMNI Flow Computer.

- **MPU Series B? (Y/N)** The OMNI Flow Computer can communicate with the Series A flowmeter and beginning with v23.74.30 and v27.74.20 firmware, can also communicate with the Series B flowmeter. Specify N for Series A or Y for Series B.
- Flow Direction MPU 1200 flowmeters allow for bi-directional fluid flow measurement. For pulse frequency signals, setup the flow computer to totalize either forward or reverse flow on any meter run with an ultrasonic flowmeter.

Meter Run Setup Entries

NOTE: Velocity of Sound – The velocity of sound (VOS) refers to the amount of time it takes an acoustic pulse to travel along the gas ultrasonic paths. The VOS will vary depending upon gas type and line conditions.

The following meter run setup entries are available for the MPU 1200 ultrasonic flowmeter when using pulse frequency signals:

- **Maximum Required Gain Value** The flow computer monitors the maximum gain value for each ultrasonic path in both directions. An alarm occurs if the gain of any path rises above this value.
- **Minimum Burst Percent Used** This entry checks the ratio of valid ultrasonic pulses received versus total pulses transmitted for each ultrasonic path in both directions. A ratio below this setting will cause an alarm.
- Velocity of Sound (VOS) in Gas, Deviation Percent from Average This entry is the maximum percent that the VOS of any individual path can vary from the average VOS of all the paths. An alarm occurs if the percent of deviation of one or more paths exceeds this value.
- AGA-10 VOS Deviation (available with Firmware v23.74.11 and v27.74.11+) The maximum percent that the VOS of any individual path can vary from the AGA-10 calculated VOS of all the paths. An alarm occurs if the percent of deviation of one or more paths exceeds this value.
- Maximum Flow Deviation Percent If there is a valid flow I/O point assigned this is the percent of deviation between the calculated flow from the pulse input channel compared to the MPU 1200 flow data received via the OMNI SV serial port. The OMNI Flow Computer raises the pulse suspect alarm if the flow deviation percentage exceeds this limit.
- Maximum Meter Downtime Enter the maximum allowable MPU downtime in minutes. If communication downtime between the OMNI Flow Computer and the MPU is less than this value, the OMNI Flow Computer will adjust its internal totalizers to match the most recent MPU 1200 totalizer value.

OMNI 3000/6000 Database Addresses & Index Numbers

Tables 7 thru 13 list the Modbus database addresses assigned within OMNI Flow Computer firmware to the MPU 1200 ultrasonic metering feature. These tables categorize data types.

	Database Address					Da	atabase	Addre	ss	
Description	for Meter Run Number			Description	for Meter Run Number			nber		
	1	2	3	4		_	1	2	3	4
Loss of communication	2154	2254	2354	2454	T03 – Bu	urst alarm	2172	2272	2372	2472
Loss of pulse impulse	2155	2255	2355	2455	T04 – Bu	urst alarm	2173	2273	2373	2473
Flow rate delta alarm	2156	2256	2356	2456	Τ05 – Βι	urst alarm	2174	2274	2374	2474
T00 - Gain high alarm	2157	2257	2357	2457	Τ07 – Βι	urst alarm	2176	2276	2376	2476
T01 - Gain high alarm	2158	2258	2358	2458	Τ08 – Βι	urst alarm	2177	2277	2377	2477
T02 – Gain high alarm	2159	2259	2359	2459	Τ09 – Βι	urst alarm	2178	2278	2378	2478
T03 - Gain high alarm	2160	2260	2360	2460	T10 – Bu	urst alarm	2179	2279	2379	2479
T04 - Gain high alarm	2161	2261	2361	2461	T11 – Bu	urst alarm	2180	2280	2380	2480
T05 - Gain high alarm	2162	2262	2362	2462	Path 0 -	Gas VOS alarm	2181	2281	2381	2481
T06 - Gain high alarm	2163	2263	2363	2463	Path 1 -	Gas VOS alarm	2182	2282	2382	2482
T07 - Gain high alarm	2164	2264	2364	2464	Path 2 -	Gas VOS alarm	2183	2283	2383	2483
T08 - Gain high alarm	2165	2265	2365	2465	Path 3 -	Gas VOS alarm	2184	2284	2384	2484
T09 - Gain high alarm	2166	2266	2366	2466	Path 4 -	Gas VOS alarm	2185	2285	2385	2485
T10 - Gain high alarm	2167	2267	2367	2467	Path 5 -	Gas VOS alarm	2186	2286	2386	2486
T11 - Gain high alarm	2168	2268	2368	2468	MPU 1200 status alarm ⁽¹⁾		2187	2287	2387	2487
T00 – Burst alarm	2169	2269	2369	2469	MPU 1200 config. Alarm ⁽²⁾ 2		2188	2288	2388	2488
T01 – Burst alarm	2170	2270	2370	2470	Notes: VOS → Velocity of Sound					
T02 – Burst alarm	2171	2271	2371	2471		Tnn → Transducer	nn			

Table 7. Meter Run Alarm Status Points – Real Time Data

(1) This status alarm is active and logged in the OMNI 3000/6000 when Object No. 5 of the MPU 1200 Modbus database is a non-zero value.

(2) This configuration alarm is active when Object No. 788 of the MPU 1200 Series A Modbus database is set to 0 (zero), enabling the 32-bit single-precision floating-point database. For the Series A flowmeter to communicate with the OMNI 3000/6000, this object must always be set to 1, enabling the 64-bit double-precision floating-point database. The Series B flowmeter is fixed at 32-bit single-precision floating point database (see "<u>MPU 1200 Configuration: Miscellaneous Configuration</u>" in this Technical Bulletin).

Table 8. 16-Bit Integer Registers – Real Time Data

	Database Address					Da	atabase	Addre	ss
Description	for Meter Run Number		Description	for Meter Run Numbe			nber		
	1	2	3	4		1	2	3	4
Flow direct. (0=frwd,1=rvrs)	3155	3255	3355	3455	T00 - Burst % used	3158	3258	3358	3458
T00 - Gain	3180	3280	3380	3480	T01 - Burst % used	3159	3259	3359	3459
T01 - Gain	3181	3281	3381	3481	T02 - Burst % used	3160	3260	3360	3460
T02 - Gain	3182	3282	3382	3482	T03 - Burst % used	3161	3261	3361	3461
T03 - Gain	3183	3283	3383	3483	T04 - Burst % used	3162	3262	3362	3462
T04 - Gain	3184	3284	3384	3484	T05 - Burst % used	3163	3263	3363	3463
T05 - Gain	3185	3285	3385	3485	T06 - Burst % used	3164	3264	3364	3464
T06 - Gain	3186	3286	3386	3486	T07 - Burst % used	3165	3265	3365	3465
T07 - Gain	3187	3287	3387	3487	T08 - Burst % used	3166	3266	3366	3466
T08 - Gain	3188	3288	3388	3488	T09 - Burst % used	3167	3267	3367	3467
T09 - Gain	3189	3289	3389	3489	T10 - Burst % used	3168	3268	3368	3468
T10 - Gain	3190	3290	3390	3490	T11 - Burst % used	3169	3269	3369	3469
T11 - Gain	3191	3291	3391	3491	Notes: Tnn → Transducer	nn			

	Database Address			ss		Database Address			ss
Description	for I	Meter R	un Nun	nber	Description	for Meter Run Number		nber	
	1	2	3	4		1	2	3	4
Maximum % flow deviation	17513	17613	17713	17813	Path 2 - Velocity of sound	17529	17629	17729	17829
Maximum % VOS deviation	17516	17616	17716	17816	Path 3 - Velocity of sound	17530	17630	17730	17830
Velocity of sound (VOS)	17521	17621	17721	17821	Path 4 - Velocity of sound	17531	17631	17731	17831
Gas velocity	17522	17622	17722	17822	Path 5 - Velocity of sound	17532	17632	17732	17832
Gas flow rate	7101	7201	7301	7401	Path 0 - Gas velocity	17533	17633	17733	17833
Net flow rate	7102	7202	7302	7402	Path 1 - Gas velocity	17534	17634	17734	17834
Temperature	7105	7205	7305	7405	Path 2 - Gas velocity	17535	17635	17735	17835
Pressure	7106	7206	7306	7406	Path 3 - Gas velocity	17536	17636	17736	17836
Path 0 - Velocity of sound	17527	17627	17727	17827	Path 4 - Gas velocity	17537	17637	17737	17837
Path 1 - Velocity of sound	17528	17628	17728	17828	Path 5 - Gas velocity	17538	17638	17738	17838

Table 9. 32-Bit IEEE Floating Points – Real Time Data

Table 10. 32-Bit IEEE Floating	Pints Previous	Hour's Average Data
--------------------------------	----------------	---------------------

	Da	Database Address				
Description	for I	for Meter Run Number				
	1	2	3	4		
T00 - Gain	17543	17643	17743	17843		
T01 - Gain	17544	17644	17744	17844		
T02 - Gain	17545	17645	17745	17845		
T03 - Gain	17546	17646	17746	17846		
T04 - Gain	17547	17647	17747	17847		
T05 - Gain	17548	17648	17748	17848		
T06 - Gain	17549	17649	17749	17849		
T07 - Gain	17550	17650	17750	17850		
T08 - Gain	17551	17651	17751	17851		
T09 - Gain	17552	17652	17752	17852		
T10 - Gain	17553	17653	17753	17853		
T11 - Gain	17554	17654	17754	17854		
Path 0 - Gas velocity	17555	17655	17755	17855		
Path 1 - Gas velocity	17556	17656	17756	17856		
Path 2 - Gas velocity	17557	17657	17757	17857		
Path 3 - Gas velocity	17558	17658	17758	17858		
Path 4 - Gas velocity	17559	17659	17759	17859		
Path 5 - Gas velocity	17560	17660	17760	17860		

	Database Address				
Description	for Meter Run Number				
	1	2	3	4	
T00 - Gain	17574	17674	17774	17874	
T01 - Gain	17575	17675	17775	17875	
T02 - Gain	17576	17676	17776	17876	
T03 - Gain	17577	17677	17777	17877	
T04 - Gain	17578	17678	17778	17878	
T05 - Gain	17579	17679	17779	17879	
T06 - Gain	17580	17680	17780	17880	
T07 - Gain	17581	17681	17781	17881	
T08 - Gain	17582	17682	17782	17882	
T09 - Gain	17583	17683	17783	17883	
T10 - Gain	17584	17684	17784	17884	
T11 - Gain	17585	17685	17785	17885	
Path 0 - Gas velocity	17586	17686	17786	17886	
Path 1 - Gas velocity	17587	17687	17787	17887	
Path 2 - Gas velocity	17588	17688	17788	17888	
Path 3 - Gas velocity	17589	17689	17789	17889	
Path 4 - Gas velocity	17590	17690	17790	17890	
Path 5 - Gas velocity	17591	17691	17791	17891	
Notes: Tnn → Transducer nn					

Table 11. 32-Bit IEEE Floating Points Previous Day's Average Data

	Database Address		ss		Database Address		ss		
Description	for Meter Run Number			nber	Description	for Meter Run Number			nber
	1	2	3	4		1	2	3	4
Flowmeter device type	3108	3208	3308	3408	Flow direct. (0=frwd,1=rvrs)	3155	3255	3355	3455
Maximum downtime (min)	3116	3216	3316	3416	Flow pulse freq. I/O pnt. #	13001	13014	13027	13040
SV module port #	3153	3253	3353	3453	MPU 1200 Series A or B (0 = Series A, 1 = Series B)	3154	3254	3354	3454

Table 13. Flow Computer Configuration Data – Meter Run Setup

	Database Address		ss		Database Address			SS	
Description	for Meter Run Number		nber	Description	for Meter Run Number		nber		
	1	2	3	4		1	2	3	4
Max. gain value (0 to 11)	17513	17613	17713	17813	Minimum burst % used	17515	17615	17715	17815
Maximum % flow deviation	17514	17614	17714	17814	Maximum % VOS deviation	17516	17616	17716	17816

OMNI 3000/6000 User Displays

NOTE: Meter Run Data Display – The meter run data that is displayed on OMNI screens corresponds to the SV port number the user assigned to each meter run during OMNI Flow Computer configuration (refer to Section OMNI 3000/6000 Configuration : Miscellaneous Meter Run Configuration Settings.)

Units of Measure Displayed on OMNI 3000/6000 Screens – Both the MPU 1200 and the OMNI 3000/6000 must have firmware that supports the same units of measure; i.e., both devices either have metric firmware or U.S. firmware. The types of unites are:

Variable	<u>US</u>	Metric
Temperature	°F	°C
Pressure(abs.)	PSIa	Bara
Totals	ft ³	m ³
Flow Rate	ft ³ /h	m³/h
Velocity	ft/s	m/s

Meter Run Data

To view the meter run data on the flow computer LCD display, press **[Meter]** [*n*] **[Display]** on the OMNI front panel keypad when in the Display Mode ("n" equals the meter run number: 1 to 4). The following data will display:

METER #n	
Log Data Count	
Software Revision	wwmmdd
Flow Velocity	m/s
Actual Volume Flowrate	m ³ /h
Velocity of Sound	m/s
Forward Flow	m ³
Reverse Flow	m ³
Line Pressure	Bar
Line Temperature	°C
Internal Pipe Diamter	mm
Rate Corr Factor A (Neg Dir)	XX
Rate Corr. Factor B (Neg Dir.)	XX
Rate Corr. Factor A (Pos Dir.)	XX
Rate Corr. Factor B (Pos Dir.)	XX
Flow Velocity Cut-off Limit	m/s
Alarm Status	X
FlowV PO	m/s
FlowV P1	m/s
FlowV P2	m/s
FlowV P3	m/s
FlowV P4	m/s
FlowV P5	m/s
VOS PO	m/s
VOS P1	m/s
VOS P2	m/s
VOS P3	m/s
VOS P4	m/s
VOS P5	m/s
Burst% P0-11	XXX-XXX
Burst% P1-10	XXX-XXX
Burst% P2-9	XXX-XXX
Burst% P3-8	XXX-XXX
Burst% P4-7	XXX-XXX
Burst% P5-6	XXX-XXX
Burst% P6-5	XXX-XXX
Burst% P7-4	XXX-XXX
Burst% P8-3	XXX-XXX
Burst% P9-2	XXX-XXX
Burst% P10-1	XXX-XXX
Burst% P11-0	XXX-XXX
Gain PO-11	XXXX-XXXX
Gain P1-10	XXXX-XXXX
Gain P2-9	XXXX-XXXX
Gain P3-8	XXXX-XXXX
Gain P4-7	XXXX-XXXX
Gain P5-6	XXXX-XXXX
Gain P6-5	XXXX-XXXX
Gain P7-4	XXXX-XXXX
Gain P8-3	XXXX-XXXX
Gain P9-2	XXXX-XXXX
Gain P10-1	XXXX-XXXX
Gain P11-0	XXXX-XXXX

SV Module Serial Port

NOTE: SV Port Data Display – The SV port data that is displayed on OMNI screens is specific to each SV port only, as acquired from the MPU 1200.

MPU 1200 Serial Port Settings – To communicate with the OMNI 3000/6000, set the MPU 1200 as follows:

Setting	<u>Assign</u>	
Baud Rate	19.2K bps	
Data Bits	8	
Stop Bits	1	
Parity	None	
Modbus ID	1	
Units of Measure Displayed on OMNI 3	000/6000 mu	ist have firmware that supports the same units of
measure; i.e., both devices either have	metric firmwa	are or U.S. firmware. The types of units are:
<u>Variable</u>	<u>US</u>	<u>Metric</u>
Temperature	°F	°C
Presssure(abs.)	PSIa	Bara
Totals	ft ³	m ³
Flow Rate	ft³/h	m³/h
Velocity	ft/s	m/s

You can view live data received via RS-485 communications on the flow computer front panel LCD display only if a SV port is used to input the RS-485 interface from the MPU 1200 flowmeter. To view this raw data, press **[Setup]** [*n*] **[Display]** on the OMNI front panel keypad when in the Display Mode ("n" equals the SV port number: 1 to 4). The following data displays:

SV Port n MPU 1200	
Software Revision	yymmdd
Log Data Count	X
Flow Velocity	m/s
Actual Volume Flowrate	m³/h
Forward Flow	m³
Reverse Flow	m ³
Line Pressure (Absolute)	Bara
Line Temperature	°C
Internal Pipe Diamter	mm
Rate Corr. Factor A (Neg Dir.)	m ³
Rate Corr. Factor B (Neg Dir.)	m ³
Rate Corr. Factor A (Pos Dir.)	m ³
Rate Corr. Factor B (Pos Dir.)	m ³
Flow Velocity Cutoff Limit	m/s
Alarm Status	Х
Flow Velocity - Path 0	m/s
Flow Velocity - Path 1	m/s
Flow Velocity - Path 2	m/s
Flow Velocity - Path 3	m/s
Flow Velocity - Path 4	m/s
Flow Velocity - Path 5	m/s
Velocity of Sound - Path 0	m/s
Velocity of Sound - Path 1	m/s
Velocity of Sound - Path 2	m/s
Velocity of Sound - Path 3	m/s
Velocity of Sound - Path 4	m/s
Velocity of Sound - Path 5	m/s
Burst % - T00→T11	XXX-XXX
Burst % - T01→T10	XXX-XXX
Burst % - T02→T09	XXX-XXX
Burst % - T03→T08	XXX-XXX
Burst % - T04→T07	XXX-XXX
Burst % - T05→T06	XXX-XXX
Burst % - T06→T05	XXX-XXX
Burst % - T07→T04	XXX-XXX
Burst % - T08→T03	XXX-XXX
Burst % - T09→T02	XXX-XXX
Burst % - T10→T01	XXX-XXX
Burst % - T11→T00	XXX-XXX
Gain - T00→T11	XXXX-XXXX
Gain - T01→T10	XXXX-XXXX
Gain - T02→T09	XXXX-XXXX
Gain - T03→T08	XXXX-XXXX
Gain - T04→T07	XXXX-XXXX
Gain - T05→T06	XXXX-XXXX
Gain - T06→T05	XXXX-XXXX
Gain - T07→T04	XXXX-XXXX
Gain - T08→T03	XXXX-XXXX
Gain - T09→T02	XXXX-XXXX
Gain - T10→T01	XXXX-XXXX
Gain - T11→T00	XXXX-XXXX

DOCUMENT REVISION HISTORY

REVISION

A B C

DATE

30-January-2002 26-February-2003 10-March-2009

PURPOSE / CHANGE REQUEST

Maintained on the web - Initial release Maintained on the web DCR 090080

